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We consider the statistical mechanics of a complex field Z whose dynamics are
governed by the focussing cubic Schrödinger equation. Here the Hamiltonian

H=F
W

51
2
|NZ|2−

1
4
|Z|46 dx

is unbounded from below, preventing the natural Gibbs measure from being
normalizable. This difficulty may be circumvented (5) by taking W the circle of
perimeter L and fixing the mean-square (which is conserved by the dynamics):
>L0 |Z|2 dx=LD for positive ‘‘density’’ D. The resulting (probability) measure on
paths is absolutely continuous to the two-dimensional Wiener measure and is
known to be invariant under the flow. (2, 7) One way to extend this picture to the
whole-line flow is to take the thermodynamic limit (L ‘.). Unfortunately, the
unboundedness of H causes vast local concentration of the field as L increases
and leads to collapse at L=.. (11) Here we attempt to capture fluctuations away
from this collapse by performing a joint continuum and infinite-volume limit for
an appropriate lattice ensemble. The result is that, for high density, the scaled
paths go over into a White Noise.
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1. INTRODUCTION AND RESULTS

The focussing cubic Schrödinger equation taken on the circle of perimeter
L may be written
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Z=

“
2

“x2
Z+|Z|2 Z



for the complex field Z(x, t)=Q(x, t)+iP(x, t). The study of a statistical
mechanics for fields of this type was initiated by Lebowitz, Rose, and Speer
(LRS) (5, 6) as forming an idealized description of Langmuir waves in a
plasma, propagating laser fields in a nonlinear media and like phenomena.
Recognizing that the pair (Q, P) form conjugate variables in the

Hamiltonian formalism of the equation with

H=
1
2
F
L

0
[(Q −)2+(P −)2] dx−

1
4
F
L

0
[Q2+P2]2 dx,

LRS introduced the canonical Gibbs ensemble for the dynamics:2

2 The setup in LRS is more general. They consider nonlinearities beyond the cubic as well as
the temperature dependent ensemble in which e−bH replaces e−H.

e−H d.P d.Q=e+(1/4) >
L
0 [Q

2+P2]2×e−(1/2) >
L
0 [(QŒ)

2+(PŒ)2] d.Q d.P. (1)

The meaning of this formal object is as follows. The second factor signifies
that (Q, P) is the periodic Wiener process, i.e., it is formed of standard 2-d
paths starting at (Q, P)(0)=c and conditioned to return to c at x=L, this
common value being distributed uniformly over the plane. The first part
is just a density. While it has a proper sense as paths are continuous under
the Wiener measure, the resulting ensemble has infinite total mass. This
is remedied by taking a micro-canonical viewpoint in which the measure
is restricted by conditioning on the constant of motion >L0 (Q2+L2)=LD
for fixed D > 0. That is, we consider the probability measure on paths with
partition function:3

3 The peculiar but useful notation (Q, P)(L)=c and the like indicate densities: E[F(Q)=a,
G(P)=b]=(“2/“N “M) E[F(Q) [N, G(P) [M]|N=a, M=b.

ZL=F
R2

Ec 5e
1
4
>L0 [Q

2(x)+P2(x)]2 dx, F
L

0
Q2(x)+P2(x) dx=LD, (Q, P)(L)=c6 dc.

Here E• is the mean of the free Wiener process (Q, P) starting at • ¥ R2.
The fact that now ZL <. was first proved by LRS.
The existence of the flow in the present ensemble along with the

invariance of the latter was established independently by Bourgain (2) and
McKean. (7) McKean also discussed the question of the thermodynamic
(L ‘.) limit: ref. 8 puts forward a proof that the full limit does not exist.
That is, the statementwas that depending on how the circle is taken to the line,
one sees an infinity of Gibbs states. This was offered up as a possible expla-
nation for the differing numerical results of other authors. Simulations of
LRS suggested a phase transition: the ensemble living near solitons/radiation
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for high/low values of D. The work of Burlakov (3) appeared to run counter
to this interpretation.
Unfortunately ref. 8, contains an error. In fact, not only does the

thermodynamic limit exist, it is trivial: as L ‘. the ensemble collapses
onto the delta measure on the 0-path.4 This is made rigorous in ref. 11

4 This possibility was discussed by LRS.

where the free energy is computed:

lim
L ‘.

1
L3
log ZL= sup

>.−. |f(x)|
2 dx=D

3D
4
F
.

−.
|f(x)|4 dx−

1
2
F
.

−.
|f −(x)|2 dx4 . (2)

For whatever D > 0, the leading paths which contribute to (2) live near a
single soliton of height L and width 1/L, and it follows that at L=. the
total energy is concentrated on a (equally distributed on R) point. We note
in passing that the above free energy is positive and continuous in D—one
does not see evidence of phase transition at this level.
After the fact, the collapse may be viewed as the only way possible for

the rather fierce competition between the quartic interaction and the micro-
canonical fiat to resolve itself. It also indicates that at finite L, the ensemble
is supported on very rough paths. One way to capture this is by trying to
understand fluctuations about this trivial limit—or see what is happening
away from the soliton. This is the question posed here. Since the path goes
down to zero, the problem may be formally stated as determining a rate
cL ‘. and a limit law for the (scaled) field (cLQ, cLP) under the micro-
canonical measure.
Now such a computation in the infinite dimensional diffusion

ensemble is beyond us. Therefore, in hope of shedding some light on the
matter, we introduce and study an appropriate lattice model of the cubic
Schrödinger system. The idea is simple: Wiener measure is replaced by a
Gaussian lattice field. Also taking things one-dimensional, we introduce the
Hamiltonian:5

5 From here on we will drop the usage of K and L. It will be clear from the context when we are
running through integers.

HL, D[Q]=−
1
4

C
KL/DL−1

k=0
Q4kD+

1
2

C
KL/DL−1

k=0

1Qk+1−Qk
D
22 D, (3)

for periodic fields Q, Q0=QKL/DL. In order to best mimic the diffusion
ensemble, the lattice spacing D is taken to depend on L as in D=1/L (the
particular choice is explained below). In other words, we are taking a joint
continuum and infinite-volume limit.
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Our object of study is then the measure

dML[Q]=
1

ZL
e{−HL, 1/L[Q]}d 1 1

L
C
L2−1

k=0
Q2k=LD2 dQ0 dQ1 · · · dQL2−1: (4)

free Gaussian Q subject to a quartic interaction term and then conditioned
to remain on the sphere of radius `LD. As in the diffusion case, the
ensemble ML collapses onto d(Q — 0) as L ‘.. Now however we are able
to determine a non-trivial limit for the field scaled at rate `L, at least for
large enough density. Our main result is the following.

Theorem 1. For D sufficiently large, the scaled lattice field QQ

`L Q decouples into a ‘‘White Noise’’ as L ‘.. In particular, for any
finite collection of positions x0 < x1 < · · · < xm: with rD a positive constant
to be defined below,

lim
L ‘.

ML[`L QLx0=a0,`L QLx1=a1,...,`L QLxm=am]

=D
m

k=0

exp(−rDa
2
k)

`p/rD

in the sense of weak convergence of measures. This follows from comput-
ing the following limiting joint density

lim
L ‘.

ML
5`L Q0=a,`L QLx=b, L 1 C

Lx−1

k=1
Q2k
1
L
2=I6

=
exp(−rDa2)

`p/rD
×
exp(−rDb2)

`p/rD
×d 1I− x

2rD
2 , (5)

which has the interpretation as the density of [Z(0), Z(x), >x0 Z2(x −) dx −] in
the continuum model.

We believe that this decoupling, or White Noise, in the limit provides
some color to roughness of the typical path in the constructed invariant
ensemble. That the result is stated for large D only stems from a missing
uniqueness statement in a variational problem connected to the lattice
Hamiltonian (3). It is our further belief that the above obtains at all D.
With that, we will see that the limiting mean-square rD (see (12)) reflects
the structure of H and has an interesting behavior as a function of the
density D: rD ‘. with D and r0=0. So, believing Theorem 1 to hold at all
D one would have that fluctuations away from the collapse are increasingly
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heavy-tailed as D a 0. One explanation of the numerical experiments (3, 5)

may be that while solitons persist, the relatively high fluctuations at small
D obscures this from view.
The rest of the paper is devoted to proving Theorem 1. We begin in

Section 2 with various technicalities. First, the measure ML is discussed in
greater detail and an auxiliary measure through which ML is better studied
is introduced. We also state a Lemma on the optimal configurations
for maximizing (3) on the sphere as these clearly govern the behavior
of limL ‘. ML. Section 3 computes the limit law of the scaled marginal
`L×Q0. The computation of (5) is completed in Section 4.

2. PRELIMINARIES

2.1. The Measure ML

Bringing in E•= the expectation of the free Gaussian field with initial
point • ¥ R, lattice D=1/L and mean-square D−1=L, the ensemble ML is
expressed more concretely through its partition function

ZL=F
`LD

−`LD

Ec 5e
1
4L

;L
2−1
0 Q4k, C

L2−1

k=0
Q2k
1
L
=LD, QL2=c6 dc.

Note the enforced periodic conditions making ML rotation invariant. We
also introduce the density

p(x, a, b, I)=Ea 5e
1
4L

;Lx−10 Q4k, C
Lx−1

k=0
Q2k
1
L
=I, QLx=b6 , (6)

through which many quantities of interest for ML can be expressed: e.g.,
ZL=> p(L, c, c, LD) dc and the marginal density is

ML[a]=ML[Q0=a]=Z−1
L p(L, a, a, LD). (7)

The arguments of ref. 11 can be adapted to show that ML[a] daQ d0,
from which the collapse is evident by rotation invariance. That is not
dwelled on here. The present goal is to understand scaled quantities:
L−1/2ML[L−1/2a] and the like.
Before moving on, a word is in order as to our choice D=1/L. The

analysis of the diffusion or ZL ensemble rests on the quartic interaction
> |Z|4 leading to paths that want to concentrate locally competing with the
energy term > |NZ|2 which likes things smooth. Now, ignoring for a second
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the periodicity and uninteresting constant multipliers, in the present lattice
setup the total mass ZL is seen to have the form:

ZL 4 F
;L
2−1
0 s

2
i=LD

exp 51
4
1
L

C
L2−1

i=0
s4i −

L
2

C
L2−2

i=0
(si+1−si)26 ds

=cL, D F
SL
2−1
1

exp 5L3D 3D
4

C
L2−1

i=0
s4i+ C

L2−2

i=0
sisi+1 4

+L3/2`D(s1+sL2−1)6 ds. (8)

Thus the competition between ; s4i (favoring a soliton) and ; sisi+1
(favoring radiation) is present here. Also, it is relatively easy to see that
limL ‘. L−3 log ZL=max{(1/4);.

−. s
4
k+;.

−. (sk−sk+1)
2 on;.

−. s
2=D}

in which you have the same rate with free energy analogous to that of ZL.
Finally, as the continuum ensemble concentrates near a single soliton of
width 4 1/L, one should take D a 0 at least as fast in order to ‘‘sample’’
the path at the correct scale.

2.2. The Auxiliary Measure

Examining the exponent in (8), it is clear that in order to understand
ML one must investigate the quartic form6

6We will usually suppress the dependence of HL2 and lL2 on D. Note also the re-indexing.

HL2, D(s)=
D
4

C
L2/2

i=−L2/2
s4i+ C

L2/2−1

i=−L2/2
sisi+1 (9)

maximized over ;L2/2
i=−L2/2 s

2
i=1. The Lagrange multiplier for this problem

will also be important below. It is

lL2, D(s)=D C
L2/2

−L2/2

s4i+2 C
L2/2

−L2/2

sisi+1=2HL2, D(s)+
D
2

C
L2/2

−L2/2

s4i . (10)

Next, the study of the scaled ML ensemble is transfered to that of the
auxiliary measure mL2 on the L2 dimensional sphere

dmL2(s−L2/2, s−L2/2+1,..., sL2/2)

=
1
zL2
exp[DL3HL2, D(s)] d 1 C

L2/2

−L2/2

s2i=12 ds−L2/2 · · · dsL2/2 (11)
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with its own private partition function zL2. Much of the proof involves
re-expressingML averages in terms of EmL2 averages.
The parameter rD appearing as the limiting mean-square in Theorem 1

may now be defined:

rD=`lim
L ‘.

Em
2
L[l2L2, D(s)/4]−1, (12)

provided the limit exists (which is proved for D± 1).

2.3. The Lattice Hamiltonian

As mentioned, the variational problem inherent in (9)—maximizing
HL2 on the sphere—plays a central role in the sequel. The next lemma
states all that we know; the proof is found in the Appendix A.

Lemma 1. Denoting

mL2, D= max
;L
2/2
−L2/2

s
2
i=1

HL2, D(s) and m., D=sup
s ¥ a2
H., D(s),

we have concentration of mL2 as in

mL2(HL2, D(s) < m., D− e) [ c1e−L
2
e−c2L

3e (13)

as well as the following.

(a) For L ‘. and any D > 0, mL2, D > 1. More precisely we know
mL2, D \ 1+D2/32 for D° 1 while mL2, D \ D/4+7/4D−O(D−3) for
D± 1.

(b) For all D > 0 the maximizing s resembles a soliton: it is largest at
k=0 and is increasing/decreasing to the left/right. In fact, the maximizer
decays exponentially far out, as in |sk | [ c1e−c2 |k| for |k| \M for some large
M with c1 and c2 depending only on D. For large D the decay is sharper as
in sk ’ D−|k|. Furthermore, the maximum m., D is attained for all D > 0.

(c) Modulo the obvious reflection, the maximizer of H is unique for
all sufficiently large values of D. A simple but important consequence being
that lL2, D converges to a constant in mL2-probability.

Remark. The real barrier to having Theorem 1 for all densities is the
fact that we have the above uniqueness statement (part (c)) for large D
only. Indeed, the matter of uniqueness is much harder than one would first
guess.
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2.4. Outline of the Computation

We will start with one-dimensional marginal

ML[a]=Z
−1
L p(L, a, a, LD)=ML[0]

p(L, a, a, LD)
p(L, 0, 0, LD)

.

Now the density p has an explicit expression as a spherical integral: to wit,

p(L, a, a, LD)

=(L/2p)L
2/2 (DL2−a2)

L2−2
2 exp(−L3D) exp(a4/4L)

×F
;L
2−1
k=1 s

2
k=1
exp 5 1

4L
(DL2−a2)2 C

L2−1

k=1
s4k+L(DL

2−a2) C
L2−2

k=1
sksk+16 ds.

This allows us to re-write ML[a] in terms of the measure mL2 defined
in (11):

ML[Q0 ¥ da]=ML[0] 11−
a2

DL2
2
L2−3
2
exp(a4/4L)

×EmL2 5exp 3−LlL2(s)
a2

2

+La`L2D−a2(s−L2/2+sL2/2)+
a4

4L
C s446 da. (14)

Next, as tightness obtains (ML[Q
2
0]=D) the scaled marginal (take a into

`L a) may be shown to satisfy: for a bounded and L large,

ML[`L Q0 ¥ da]=
ML[0]

`L
EmL2[e{−lL2(s) a

2/2+L3/2`D(s −L2/2+sL2/2) a}] da (15)

up multiplicative errors 1+O(1/L) on the right hand side. Now, mL2 con-
centrates sharply at the maximizers of HL2 and Lemma 1(b) shows that the
tail variables (s−L2/2, sL2/2) are exponentially small in L at H=max. Again
by the concentration of mL2 it is natural to hope that lL2 should be roughly
constant for L ‘., and thus that (15) should settle down to a centered
Gaussian with mean-square one over l.; the tail variables being unimportant.
However, this reasoning is just wrong. The tail variables do figure in: sL2/2

exhibits enough fluctuation (away from zero) that EmL2[exp(L3/2`D asL2/2)]
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is strictly-positive for L ‘..7 We will need the following, the proof of

7 The symmetry of HL2 implies s−L2/2 and sL2/2 are equally distributed.

which is left to Appendix A.

Lemma 2. There exists some positive c depending on D such that

lim sup
L ‘.

Em
2
L[exp(L3cs2L2/2)] <..

For D sufficiently large this will also imply that L−1/2ML[0]=O(1) for
L ‘..

Given Lemma 2 we will show the pair (L3/2s−L2/2, L3/2sL2/2) has a
Gaussian limit for L ‘.. This is the main argument needed to establish
convergence of the scaledML marginal and occupies the next section. With
the marginal in hand, we then turn (Section 4) to the computation of the
limiting scaled joint density (5) central to Theorem 1. That too has an
expression in term of the p’s:

ML
5`L Q0=a,`L QLx=b, C

Lx−1

k=0
(`L Qk)2

1
L
=I6

=
1
L2ZL

p 1x, a
`L
,
b

`L
,
I
L
+
a2

L2
2 p 1L−x, b

`L
,
a

`L
, DL−

I
L
−
a2

L2
2 .
(16)

3. THE SCALED MARGINAL DISTRIBUTION

Our objective here is to establish:

Proposition 1. Let D be large. Then for L ‘. the law of the tail
variables (L3/2`D s−L2/2, L3/2`D sL2/2) converges to a pair of indepen-
dent centered Gaussians with variance l/2−`l2/4−1. Here l=lD,. > 2.
As an immediate corollary one gets the convergence in law of the scaled
ML marginal as in

lim
L ‘.

ML[`L Q0 ¥ da]=lim
L ‘.

ML[0]

`L
Em

2
L[e−

1
2
lL2(s) a

2+`D L3/2(s −L2/2+sL2/2)]

==rD
p
exp[−rDa2] da (17)
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where rD=`l2/4−1. Note this also pins down the convergence of
L−1/2ML[0] for D± 1.

The proof of Proposition 1 requires the following two lemmas. The
strategy is to determine an integral equation satisfied by any limiting
density function of the tail variables and then search for solutions.

Lemma 3. Under mL2, the law of L3/2`D sL2/2 is tight for L ‘.

(assuming large D); any limiting density function f is even and solves

f(x)=f(0) exp(−lx2/2) F
.

−.
exp(xy) f(y) dy. (18)

Likewise, any limiting joint density

f(x, y)= lim
LŒ ‘.

mL2(L3/2`D s−L2/2=x, L3/2`D sL2/2=y)

satisfies

f(x, y)=f(0, 0) exp(−l(x2+y2)/2) F
.

−.
F
.

−.
exp(xz+yw) f(z, w) dz dw

(19)

with obvious symmetries f(x, y)=f(−x, −y)=f(y, x).

One may check that fg é fg with fg(x)=`L/2p exp(−Lx2/2) and
L=l/2+`l2/4−1 does indeed solve (19). Unfortunately neither (18) nor
(19) has a uniqueness statement. Instead, we make due with the following.

Lemma 4. Denote L=l/2+`l2/4−1. The integral equation (18)
has a unique solution f=fg satisfying the side condition >.−. exp(x2/2L)
×f(x) dx <. given by fg(x) —`L/2p exp(−Lx2/2). However, it admits
infinitely many solutions of less rapid decay. The analogous statement
holds for (19) and the product fg é fg.

Given that the ‘‘correct’’ solution has the best decay we can then verify
the Proposition and thus the limit of the scaled one dimensional ML

marginal.
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Proof of Lemma 3. The distribution function mL2(sL2/2 [ x) is given
by the integral:

1
zL2

F
{;L

2/2
−L2/2

s
2
i=1, sL2/2 [ x}

exp 5DL3 3HL2−1(s)+
D
4
s4L2/2+sL2/2sL2/2−1 46 ds

=
1
zL2

F
x

−1
(1−z2)

L2−3
2 exp 1L3 D

2

4
z42 F

;L
2/2−1
−L2/2

s2=1
exp[DL3HL2−1(s)]

× exp 5DL3 1−1
2
z2lL2−1(s)+z`1−z2 sL2/2+

D
4
z4 C s4i 26 dz ds

with the obvious notation HL2−1 referring to the ensemble with one less
particle. The density of interest then satisfies

fL2(x)=mL2(L3/2`D sL2/2=x)

=
zL2−1

`D L3/2zL2
EmL2−1[e−lL2−1(s) x

2/2+L3/2`D xsL2/2−1](1+O(1/L))

for L ‘.. This, in turn, is schematized as

fL2(x) 4 fL2(0) exp(−lx2/2) F
.

−.
exp(xz) fL2−1(z) dz, (20)

where the fact that (Lemma 1) lL2−1(s) converges in law to a constant
l.=l is used.
By Lemma 2, lim supL ‘. EmL2[exp(L3/2csL2/2)] <. for any c, so, for

fixed x, > exyfL2(y) dy converges along a subsequence. It then follows that
fL2(0) =L−3/2zL2−1/ (`D zL2) is bounded both above and away from 0
for L ‘.. Differentiating (20) and re-runing the above argument provides
a uniform bound on |f −L2(x)|. The conclusion is that there is a sequence
over which the densities fL2 themselves converge (uniformly on compacts)
yielding the advertised integral equation. The derivation for the pair
density is much the same. L

Proof of Lemma 4.8 The proof is made in the one dimensional

8H. P. McKean helped with this.

setting (18), it is the same for (19). Integrating (18) produces 1=f(0)`2p/l
× >.−. exp(x2/2l) f(x) dx, providing some control of the tails of f.
A sharper control is easily obtained.
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Introduce the sequence Ln=l−L
−1
n−1 where L1=l and L.=l/2+

`l2/4−1 — L. Next multiply both sides of (18) by exp(x2/2Ln) and
integrate to find

F
.

−.
exp 1 x

2

2Ln
2 f(x) dx=f(0)`2p/Ln+1 F

.

−.
exp 1 x

2

2Ln+1
2 f(x) dx.

(21)

That is, exp(x2/2Ln) f(x) ¥ L1 for any n <., and we will show that solu-
tions of (18) split into two classes depending upon whether the monotone
limit

lim
nQ.

F
.

−.
exp 1 x

2

2Ln
2 f(x) dx=F

.

−.
exp 1 x

2

2L
2 f(x) dx (22)

is finite or not. This is achieved by iteration. The nth iterate of (18) has the
form

f(x)=f(0) exp 1−Ln
2
x22 >

.

−. exp(xz/L1L2 · · ·Ln−1) exp(z
2/2Ln−1) f(z) dz

>.−. exp(z2/2Ln−1) f(z) dz

— f(0) exp 1−Ln
2
x22 F.

−.
exp(xz) dmn(z). (23)

Now, if > exp( x22L) f(x) dx <., taking limits on both sides of (21)
implies f(0)=`L/2p. From here, (23) would provide the inequality f(x) \
`L/2p exp(−Lnx2/2) and so also f(x) \ fg(x). Since both f and fg are
probability densities, the conclusion is that f=fg.
If on the other hand > exp(x2/2L) dx=., we consider (23) in the

limit:

f(x)=f(0) exp(−Lx2/2) F
.

−.
exp(xz) dm(z), (24)

where m=m., the convergence of the latter being plain. From (24) we may
infer the rules

f(x)=
exp(−Lx2/2)

`2p/L
p dm(x)=fg(x) p dm(x) (25)

(p=convolution) and

dm(x)=
exp(−x2/2L)

f(0)`2p/L
dm(x/L). (26)
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To verify (25), apply our integral operator to fg p dm. For (26), use (24) to
express the transform > exz dm(z) and then note that (25) simplifies the
remaining expression.
These rules allow us to generate infinitely many solutions of (18). By

(25), m[0] > 0 is equivalent to f(0)=`L/2p which implies f=fg. There-
fore, let m have positive mass at some point q ] 0. Since f is even m[q]=
m[−q], (26) implies both ±Lq and ±q/L have positive m mass. This proli-
ferates: m has a sequence of atoms at ±Lnq and ±q/Ln for n \ 1 and one
finds

dm(x) — dmq(x)=m[q] C
.

n=1
C
±
wnd(x±Lnq)+m[q] C

.

n=1
C
±
w̄nd(x±L−nq),

(27)

where

wn=
exp[− q

2

2
L2n+1

L−1/L]

f(0)`2p/L
and w̄n=

exp[ q
2

2
L−2n+1

L−1/L]

f−1(0)`L/2p
.

It is readily checked that mq[R] <., so fg p mq solves (18). Even more
solutions arise from convex combinations of mq’s. The proof is finished. L

Proof of Proposition 1. The proof hinges on an integrability condi-
tion enforced by the ensemble ML. Recall the scaled marginal density can
be written

ML[`L Q(0)=a]

4
ML[0]

`L
EmL2[exp{−lL2a2/2+L3/2`D(s−L2/2+sL2/2) a}]

up to multiplicative errors 1+O(1/L), provided |a| [K`L for a large K.
Now for D large L−1/2ML[0] is bounded below, and integrating the last
display in a over an appropriate range tending to the whole line as L ‘.

implies that any limiting density f(x, y) must also satisfy

F
.

−.
exp(−la2/2) F

.

−.
F
.

−.
exp(ax+ay) f(x, y) dx dy da <.. (28)

This holds when f(x, y)=fg(x) fg(y), and next we show this is the only f
for which it does.
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As in Lemma 4, any potential limiting density satisfies f(x, y)=
[fg(x) fg(y)] p dm(x, y) with

dm(x, y)=
exp(−(x2+y2)/2L)
f(0, 0) 2p/L

dm(x/L, y/L). (29)

Also, f(x, y)=fg(x) fg(y) is equivalent to m=d(0, 0), this being the most
rapid decay possible. A different solution, fp, q=fgfg p mp, q, may be
formed by placing positive mass at a point (p, q) off the origin. Using the
rule (29) to fill out the measure mp, q and the symmetries which any
fL2(x, y) must possess, one concludes that

fp, q(x, y)=
1
z
3 C
.

n=1
wn[e−

1
2
L |(x, y)+Ln(p, q)|2+e−

1
2
L |(x, y)−Ln(q, p)|2]

+C
.

n=1
w̄n[e−

1
2
L |(x, y)+L −n(p, q)|2+e−

1
2
L |(x, y)−L −n(q, p)|2]4 (30)

where wn=rncn, w̄n=r−nc
−1
−n with cn=exp(−L

2n(p2+q2)/2(L−1/L)),
r=2pf(0, 0)/L < 1, and z normalizes m. Next let pq > 0 and compute:
with Cn(x, y)=(x−Lnp)2+(y−Lnq)2,

F
.

−.
e−la

2/2 F
.

−.
F
.

−.
exp(ax+ay) fg(x) fg(y) p m(dx, dy)

\
1
z

C
.

n=1
wn F

.

−.
e−la

2/2 F
.

−.
F
.

−.
exp(ax+ay) exp 5−L

2
Cn(x, y)6

dx dy
(2p/L)

da

=
1
z

C
.

n=1
r−n exp(L2npq/(L−1/L))=.

since L > 1. The argument with pq [ 0 is similar. It only remains to note
that it is sufficient to consider measures generated by a single point mass.
But if (28) fails for such a measure, it fails for convex combinations and so,
by approximation, also for f ’s with m absolutely continuous. L

4. LIMITING JOINT DENSITY

We can now establish the limit of the scaled density (5). In terms of
the p’s this object splits into two components, recall (16). The asymptotics
of the first piece may be obtained by straightforward stationary phase
considerations. In fact, the particulars of the computation are reminiscent of
an old work of Berlin and Kac. (1) For this reason, the result is stated without
proof, after which the remaining details behind Theorem 1 are provided.
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Lemma 5. For fixed a, b, I, and L ‘.,

1
L3/2
p 1x, a

`L
,
b

`L
,
I
L
+
a2

L2
2 4 x

3/2

8pI2
[f]−1/2 exp 5−1

2
(a2+b2)11+ x

2I
−f26

×L1/2 exp 5−L 3I−If+x
2
ln 1 x
4I
+
1
2
f246

with f=f(x, I)=`1+ x2

4I2
.

Proof of Theorem 1. Recall the second piece of the density in (16):

1

`L ZL
p 1L−x, b

`L
,
a

`L
, DL−

I
L
−
a2

L
2

=
p(L, 0, 0, LD)

`L ZL
×
(2p)Lx/2 p(L−x, 0, 0, LD)
(DL3)Lx/2 p(L, 0, 0, LD)

×EmL2−Lx 5exp 31
2
(LI+a2+b2) lL2−Lx

+L3/2`D(as−(L2−Lx)/2+bs(L2−Lx)/2)46

— CL×EmL2−Lx[etc.]

up to asymptotically small errors. Next combine this with the result of
Lemma 5:

ML
5`L Q0=a,`L QLx=b, C

Lx−1

1
[`L Qk]2

1
L
=I6

4 CL
x3/2

4pI2
11+ x

2

4I2
2−1/4 exp 5−1

2
(a2+b2) 1L+x

2I
−=1+ x

2

4I2
26

×`L exp 5−L 3l
2
I−I=1+ x

2

4I2
+
x
2
ln 1 x
2I
+=1+ x

2

4I2
246

×EmL2−Lx 5exp 31
2
LI(l−lL2−Lx, D(s))+

1
2
(a2+b2)(L−lL2−Lx(s))4

× exp{L3/2`D(as−(L2−Lx)/2+bs(L2−Lx)/2)}6

— CLF(I, x) 5
rx, I

p
exp[−rx, I(a2+b2)]6 [`L exp[−LY(I)]] E[a, b, I].

(31)
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for fixed a, b, and I and L ‘.. Here l=l., D and L=l/2+`l2/4−1.
In (31) we have normalized in the a, b variables in that GI(a) GI(b) —
(rx, I/p) exp[−rx, I(a2+b2)] is the density of two independent centered
Gaussians with mean-square one over L+ x

2I−`1+
x2

4I2
.

Regarding the I variable, the function

Y(I)=
l

2
I−I=1+ x

2

4I2
+
x
2
ln 1 x
2I
+=1+ x

2

4I2
2

is strictly convex with minimum at I0 — (x/2)(l2/4−1)−1/2; it follows that
the measure

IL(I) dI —`LYœ(I0)/2p exp[−L[Y(I)−Y(I0)]] dI

converges weakly to the unit mass at I0. At I=I0, Y(I0)=(x/2) ln L, and
rx, I0=`l

2/4−1=rD, the limiting mean square in the statement.
Summarizing, the measure of interest has the form:

ML[da, db, dI]=L
−Lx
2 CL[F(I)`2p/Yœ(I)] E[a, b, I]

×GI(a) GI(b) IL(I) da db dI, (32)

where GI(a) GI(b) IL(I) da db dI converges to the advertised limiting
measure. It remains to explain why the other factors fall into line for
I=I0 and L ‘.. That E[a, b, I] 4 1 for L ‘. follows from limL ‘.

EmL2[exp L3/2`D(as−L2/2+bsL2/2)]=exp[(a2+b2)/2L] (Proposition 1)
along with the relation L+L−1=l. Next, one computes that`Yœ(I0)/F(I0)
=`rD yielding the constant factor

`p

rD
L
−Lx
2 CL=

ML[0]

`L

`p

rD
×
(2p)Lx/2 pL(L−x, 0, 0, LD)
(DL3)Lx/2 LLx/2pL(L, 0, 0, LD)

=
ML[0]

`L

`p

rD
× D
Lx−1

k=0

`2p zL2−k−1
`DL L3/2zL2−k

(33)

which is to equal one in the limit. Now, from Proposition 1 we have that
ML[0]/`LQ`rD/p and a look at the proof will explain that also

`DL/2p L3/2zL2z
−1
L2−l \ 1 for L± 1. In other words, the entirety of (33) is

asymptotically less than one, and so any limiting ML[da, db, dI] is domi-
nated by the claimed limiting distribution. However, having already shown
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that ML[`L Q0 ¥ da] converges, the rotation invariance of the scaled
ensemble implies tightness of the present joint density and an inequality
suffices. The proof is finished. L

APPENDIX A

Proof of Lemma 1. The stated level of concentration of the mL2, D
about the H-maximimizers follows from simple estimates; the details are
not reported.

(a) HL2, D is evaluated at the appropriate test function {s}. For
D° 1, take sk=h−1q |k| where q < 1 and h=(1+2;n

1 q
2k)1/2. For large D

a convenient choice is sk=D−|k| for |k| \ 1 with s
2
0=1−2;n

1 D
−2k.

(b) First, it is clear that at maximum all the sk are of one sign, so
from here on we take them positive. The task is to maximize

HL2(s)=
D
4
C
i
s4i+

1
2
C
i, j
Ci, jsisj

on ; s2k=1 for Ci, j=1 if |i− j| [ 1 and 0 otherwise. Both the sum of
fourth powers and the constraint are insensitive to permutations of the
indices. The term ; Ci, jsisj responds to a rearrangement theorem of
Riesz:9 it is largest when {s} peaks at the center (n=0) and is increas-

9 See ref. 4. We thank Professor Elliot Lieb for pointing this out to us.

ing/decreasing to the left/right.
This increasing/decreasing immediately gives s|k| [ |k+1|−1/2. This,

along with the Euler–Lagrange equations (sk−1+sk+1=lsk−Ds
3
k) gives

sL2−1 \ (l−D/(L2+1)) sL2. Upon iteration this is

sL2−k \ 1l−
D
L2+1
2 D

k

j=1

1l−1− D
L2+1−j
2 sL2.

Now, for fixed D and large enough L we have from (a) that l > 2+d for
d > 0 and it is easy to conclude that there are constants M, C, and h such
that |k| >M implies s|k| [ Ce−h |k|. Here h increases with D.
An extremal s. is furnished by the limit of the maximizers sL of HL2.

The proven decay of the tails of sL yields both s limiting subsequence and
the necessary domination:H.(s.)=m..

(c) As for uniqueness, large D can be handled due to sharper esti-
mates for H and l. In detail, the lower bound for large D along with the
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fact that s0 \ sk at maximum yields that there (D/4)+(3/2) D [H(s)
[ (D/4) s20+1. This, in turn, implies ;k ] 0 s

2
k=1−s

2
0 [ 4/D, so that

s±1 [ 4/D and in fact s±|k| [ const.×D−|k|. In brief, any maximizer satisfies
s0=1−O(1/D).
Suppose there are two maximizers (s0 and s2). Think of H as a

function of the angle h: 0 [ h [ h1 along the geodesic between these
points: s0=s(0) and s1=s(h1) with h(h)=H(s(h)). Look at the action
of a small rotation along this arc upon h and compute: sœ(h)=−s(h),
||s −(h)||=1, and

hœ(h)=−l+3DC s2k(s −k)2+2 C s −ks −k+1 [ −l(h)+3D(s −0)2 (h)+O(1).

The inequality follows from Cauchy–Schwartz along with the bound s±|k| [
4/D for |k| \ 1. Along the arc ;k ] 0 s

2
k 4 4/D maintains, and this implies

that l(h) \ Ds40(h) 4 D(1−O(1/D)) and (s
−

0)
2 (h) 4 sin2(h) 4 O(1/D).

This forces the needed contradiction that hœ(h) < 0 once D is large enough.
The proof is finished. L

Proof of Lemma 2. Wanting to control Em
2
L[exp L3cs2L2] we may

assume from (13) that sL2 < L−5/6 say. Next, repeating the calculation
starting the proof of Lemma 3: with some constant C and L ‘.,

Em
2
L[eL

3cs
2
L2] [

C
zL2

F
SL
2−2
1

ds exp[L3DHL2−1(s)]

×F
.

−.
dsL2 exp 5L3cs2L2−L3D

1
2
lL2−1(s) s

2
L2+L

3Ds2L26

where we have also restricted to the set sL2−1 [ sL2. The Gaussian integra-
tion in sL2 may then be performed if c is chosen so that Dl/2−D− c > 0
for L ‘ 0 which may be done the results of Lemma 1(a). The right side is
then bounded via the simple estimate seen before: zL2 \ const. L−3/2zL2. For
the integral over the set sL2 < sL2−1 one simply iterates the same argument
to complete the proof.
As for L−1/2ML[0], we first mention that one has an upper bound for

all D. Examining the inverse, a little manipulation will show`LML[0]−1=

`L ZL
p(L, 0, 0, LD)

\ D1/2L3/2 F
d

−d
(1−c2) (L

2−3)/2 Em
2
L[exp[−L3DlL2(s) c2/2]]

× exp[DL3(c(1−c2)1/2 (s−L2/2+sL2/2))]] dc,

592 Rider



for any d > 0 but less than 1. Next, Jensen’s inequality is applied in the mL2
expectation to produce: with EmL2[sk]=0 for any k,

`L(ML[0])−1 \=
2p

EmL2[lL2]
(1−d2)L

2/2 31−1
d

exp(−DL3EmL2[lL2] d2)

L3/2D1/2Em
2
L[lL2]
4 .

Here we have used the fact EmL2[lL2(s)] \ 2EmL
2[HL2(s)] > 0 for L large.

Taking d=d(L)=L−3/4 gives lim supL ‘. ML[0]/`L [ (1+D/2)/`2p.
An estimate of L−1/2ML[0] from below requires more. A necessary

condition stems from integrating the density ML[Q0=a] (recall (14)) over
some large range |a| [K. By tightness we find that

1−o(1) [
ML[0]

`L
EmL2 5= 2p

lL2
exp[L3D(s−L2/2+sL2/2)2/2lL2]6 ,

up to small errors on the right hand side for L large. Thus, L−1/2ML[0]
=O(1) for L ‘. is implied by

lim sup
L ‘.

EmL2[eL
3D(s −L2/2+sL2/2)

2/2lL2] [ lim sup
L ‘.

EmL2[e2L
3Ds2L2/lL2] <.;

allowing the desired conclusion for large D by taking c=2 above since in
that case we know lL2, D > D for L ‘.. L
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